
!

!

!

Backbones!in!Wireless!Sensor!Networks!
!
An!approach!to!generating!communication!backbones!in!wireless!sensor!networks!using!the!
Smallest!Last!Order.!

!
M.#Tyler#Springer#
CSE!7350!Algorithm!Engineering!–!Semester!Project!
December!15,!2015!

!

!

!

!

!

!

!

!

!

!
!
!
!

Executive!Summary!

Introduction and Summary
Wireless Sensor networks have become a hot topic in research communities in recent years as
improvements in technology and reductions in manufacturing costs have made their creation and
deployment increasingly economically feasible. Technologies such as Wi-Fi, ZigBee and
Bluetooth are all commonly used protocols in wireless sensor networks and have been subject to
numerous implementation and hardware improvements over their lifetime resulting in sensors
that are smaller, cheaper and more energy efficient. This coupled with their unlimited versatility
and lack of physical connections have made wireless sensors an increasingly viable choice for
interconnected ad-hoc networks [1].

This paper details a project that models ad-hoc networks of wireless sensors of varying scale
across a variety of geographic areas. The project models these networks by creating random
geometric graphs (RGG) of varying size, degree and type and interconnecting vertices if they are
within a distance R of one another [2]. In the context of wireless sensors R is the maximum
broadcast range of any single sensor and thus determines how far away any two sensors must be
to communicate. Determining connections between vertices in the graph is not a trivial task and
can be a very expensive process if great care is not taken when doing so. This project makes use
of several methods for decreasing the time and number of comparisons required to determine
vertex adjacency which will be discussed in detail in a later section. We apply the Smallest Last
Ordering algorithm [3] and a graph coloring procedure [4][10] to identify high quality candidates
for communication backbones in the graph. A backbone is a bipartite subgraph of the overall
RGG, or sensor network, that sufficiently covers all vertices that make up the overall network.
Ideally we would like to find backbones that allow any sensor in the network to communicate
with a sensor in the backbone in no more than one hop (100% coverage). The backbones must be
bipartite because this ensures that no two connected vertices share the same “color” which
practically translates to sensor broadcast frequency. With no overlapping frequencies in the
backbone we can ensure that interference is not an issue [11].

Finding high quality candidates for backbones is by no means a trivial task and brute force
techniques would quickly prove to be impractical in graphs or networks of sufficient scale. This
is particularly true given that backbones need to be generated extremely quickly as in practice
nodes may enter or exit the network at any time due to power failure, movement of the sensor or
an unlimited number of other reasons. Also wireless sensors often lack significant computational
power in an effort to make them more energy efficient or reduce their size so backbone
determination must be made as simple as possible. Finally, manual data collection on sufficiently
large scale networks is impractical so determining backbones that cover as many sensors as
possible is of utmost importance. Consider a network with 100,000 nodes and a backbone that
has 95% coverage. While data from 95% of the network can be pulled from a central location,
5,000 nodes are not covered by the backbone manual collection or formation of additional
backbones. For these reasons it is extremely important that high quality backbone generation is a
scalable process.

Results

This section presents the results of successfully using a combination of the smallest last ordering
algorithm, a graph coloring algorithm, and component search to generate communication
backbones on wireless sensor networks that are modelled by random geometric graphs. The
entire process is done for 2-dimensional graphs on the unit square and unit disk as well as 3-
dimensional graphs on the unit sphere. In all cases smallest-last ordering is accomplished in
O(|V|+|E|) time which will be demonstrated in the walkthrough. The graph coloring algorithm
used, sometimes referred to as the “Grundy coloring algorithm,” also runs in O(|V|+|E|) which is
quite fast [10]. The component search and backbone selection algorithm is based on breadth-first
search and runs in O(|V|*|E|) time due to instances where every node is of extremely low degree.
In practice however this algorithm generally runs substantially closer to O(|E|) time. Each step in
the overall simulation is quite efficient which allows us to run simulations of very large size in a
reasonable amount of time. In order to see that these claims are indeed true we have generated 10
benchmark graphs of varying type, size and average degree that we will apply our entire
simulation process to. The abbreviated results of these benchmarks can be seen in the following
table:

Graph#ID# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

N# 1,000! 4,000! 4,000! 16,000! 64,000! 4,000! 4,000! 4,000! 16,000! 64,000!
Desired#Avg#

Degree# 30! 40! 60! 60! 60! 60! 120! 60! 120! 120!

R# 0.099! 0.057! 0.070! 0.035! 0.017! 0.070! 0.098! 0.070! 0.049! 0.025!

Type# Square! Square! Square! Square! Square! Disk! Disk! Sphere! Sphere! Sphere!

Num#Edges# 14,069! 77,969! 114,817! 473,825! 1,921,111! 115,513! 223,118! 121,741! 967,081! 3,868,443!

Min#Degree# 5! 7! 17! 14! 14! 18! 49! 35! 86! 85!

Avg#Degree# 28.138! 38.984! 57.408! 59.228! 60.035! 57.756! 111.559! 60.87! 120.885! 120.889!

Max#Degree# 48! 63! 89! 88! 96! 84! 163! 89! 168! 168!

Num#Colors# 19! 30! 35! 37! 38! 39! 63! 35! 62! 62!
Backbone#
Coverage# 99.60%! 99.75%! 99.98%! 99.81%! 99.89%! 99.95%! 100%! 99.95%! 99.99%! 99.99%!
Execution#

Time# 0.98! 4.13! 4.91! 20.27! 78.14! 5.81! 7.29! 6.32! 27.44! 106.71!

The strongest features of this implementation lie in its numerous computational and end user
experience optimizations. For example, this implementation uses the “cell method” for 2D
graphs and the “block method” for 3D graphs to reduce the number of comparisons that need to
be made between pairs of points to determine adjacency. Instead of exhaustively testing all pairs,
these methods partition the points into cells or blocks of size r and test only the cells or blocks
where a given point could have a mathematical possibility of having a connection. This reduces
our comparison bound from !(#$) to the more favorable !(#$&$) as r is always less than 1 or in
the case of the block method to !(#$&'). Another performance optimization is that graphs are
visualized using a compressed adjacency list which prevent duplicate edges from being stored
thus reducing the number of edges to be drawn by a factor of 2 - meaning that we can
successfully visualize larger graphs with less lag. Finally, my implementation generates points
on the edge of the sphere using a method described by Archimedes instead of the rejection

method described in class [8]. My tests between both methods indicate that the Archimedian
method performs on average about 4x as fast as the rejection method because there are no
probabilistic elements to this process and it is based entirely on constant time operations. One
notable end user experience optimization that has been made is how vertex colors are generated
for visualizations. Instead of prepopulating a list of colors chosen by hand or randomly
generating colors, my implementation uses the golden ratio to procedurally generate colors that
are as distant from one another on the color spectrum as mathematically possible [9]. One
advantage of this approach is that colors are more distinct, making them easier to tell apart from
one another on the final visualization of the graph.

Programming Environment

Hardware Description –
Below is a list of pertinent information about the hardware that I used to run my simulation:

•! Computer: Apple MacBook Pro (Mid 2010)
•! Processor: Dual Core Intel i7 @ 2.66GHz with Turbo Boost up to 3.3GHz
•! Memory: 8GB DDR3 RAM @ 1067MHz
•! Graphics Card: NVIDIA GeForce GT 330M with 512MB VRAM
•! Secondary Storage: 500GB SATA HDD
•! Operating System: Mac OSX 10.10.3 (Yosemite)
•! CPython version 2.7.9
•! Cython compiler version 0.23.4
•! Clang compiler version 6.0 based on LLVM 3.5, build clang-600.0.54

Software Description –
The entire simulation is implemented in Python 2.7. I chose to use python because of its
flexibility when dealing with complex data types and structures and the fact that it is a garbage
collected language eliminating many memory issues that can occur without careful attention to
detail in languages like C++. Python is easy and flexible making it a great choice for any project
where extremely high performance computation is not necessary. When dealing with graphs
under 4,000 vertices my simulation has execution times comparable to a C based solution, but as
the number of vertices increases, the performance rapidly degrades. This is almost entire due to
the fact that Python runs on a virtual machine and “Python Objects” are not statically typed so
some computation must be done to determine the exact data type. This means that my python
based simulation was not scalable and was therefore unacceptable as a final solution for this
project. In order to dramatically improve execution time, I ran my Python code through a
program called “Cython” which converts the python directly to C code. C of course runs directly
on the hardware and generally resulted in execution times that were about 20% of the execution
time to run the same simulation directly in Python. Cython is a robust and trusted tool, in fact the
extremely popular and well respected “NumPy” library was written entirely using Cython [7].

 I chose to use the Processing3 graphics package to visualize the graphs that were output by my
simulation. Processing3 is an amazing tool that is based in Java and runs on the JVM that can be
used to draw 2D or 3D images and figures of just about anything you want [6]. It provides very
easy to use methods for drawing points and lines allowing me to get beautiful visualizations of
my graphs in a very small amount of time. Because processing runs on the JVM, it is slower than

some comparable libraries written in C++ (openFramework or QT to name two) but is extremely
optimized allowing for very speedy drawing times, even with graphs with many thousand
vertices. Processing3, the most recent version of Processing, has added support for a Python
“mode” which I mistakenly thought would be a good idea to use [6]. It turns out that this Python
code is passed through another tool called Jython that converts and runs python code on the
JVM. This is great because you can write python code, making the drawing process near
effortless, but you cannot use any of the standard python libraries because at the end of the day
you are running Java, not python. So in quite an interesting turn, my simulation and visualization
code is written entirely in Python, but not a single line is actually executed in the Python
environment – though this ended up being a good thing because both conversions resulted in
running times not achievable using Python as is. It should be noted that because I use two
different programs for my simulation: one to generate the data and another to visualize it, I am
using CSV files to pass data from the generation program to the visualization program. This also
makes it easy to plot figures such as original degree vs degree when deleted with a high degree
of ease.

The simulation code was written to be as memory efficient as possible so that large graphs can
be generated without placing excessive load on the machine or worrying about using a
significant amount of swap memory which would absolutely tank performance. Below are 3
plots showing the memory and CPU utilization of some sample simulations of size 5,000, 10,000
and 15,000 vertices.

From these graphs we can see that size of the executing portion of the code begins at about
161KB regardless of number of vertices generated which means our program has a very small
footprint. Generation of a 5,000 vertex simulation required about 175KB of memory and 2.6MB
of disk to complete execution. Generation of a 10,000 vertex simulation required about 193KB
of memory to complete execution. Generation of a 15,000 vertex simulation required about
205KB of memory to complete execution. We can see that the amount of memory needed does
not grow dramatically with the problem size ensuring that we can safely generate graphs of
extremely large size. The first ascending leg of these simulations corresponds to graph
generation, the spike occurs during the smallest last and backbone selection process as numerous
new pieces of information are generated. The final stable leg of the process corresponds to when
the data is being written out to CSV’s as no new memory is required. Microsoft Excel was used
to plot anything not done in Processing3.

References

[1]! M. Hannikainen, "Ultra-Low Energy Wireless Sensor Networks in Practice," Tampere

University of Technology, Tampere, Finland, May 2014.

[2]! K. Hichem and R. Vlady, "Random geometric graphs as model of wireless sensor
networks," vol. 4, IEEE, 2010, pp. 103,107,26–28. [Online]. Available:
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5451758&url=http%3A%2F%2Fie
eexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5451758. Accessed on: Dec.
15, 2015.

[3]! D. W. Matula and L. L. Beck, "Smallest-last ordering and clustering and graph coloring
algorithms," in Journal of the ACM (JACM), vol. 30, ACM, 1983. [Online]. Available:
http://dl.acm.org/citation.cfm?id=322385. Accessed on: Dec. 15, 2015.

[4]! R. van Stee, "Vertex Coloring," Max Planck Institut Informatik, Saarbrucken, Germany.
[Online]. Available: http://algo2.iti.kit.edu/vanstee/courses/vcolor.pdf.

[5]! "Euler’s formula," in Math Is Fun, 2014. [Online]. Available:
https://www.mathsisfun.com/geometry/eulers-formula.html. Accessed on: Dec. 15, 2015.

[6]! J. Gilles, A. Parrish, and M. Peyton, "Python mode for processing," Processing. [Online].
Available: http://py.processing.org/. Accessed on: Dec. 15, 2015.

[7]! S. Behnel, "Using the Cython compiler to write fast python code," Feb. 6, 2002. [Online].
Available: http://www.behnel.de/cython200910/talk.html. Accessed on: Dec. 15, 2015.

[8]! K. Hong, "Uniform distribution of points on the surface of a sphere - 2015," 2015.
[Online]. Available:
http://www.bogotobogo.com/Algorithms/uniform_distribution_sphere.php. Accessed on:
Dec. 15, 2015.

[9]! M. Ankerl, "How to generate random colors Programmatically," 2009. [Online]. Available:
http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/.
Accessed on: Dec. 15, 2015.

[10]! C. Ayala, “A method of determining the bipartite backbones in a Wireless Sensor Network
using the Smallest Last Ordering Algorithm,” Dec. 14, 2013

[11]! R. Asgarnezhad and J. Torkestani, “A survey on backbone formation algorithms for
Wireless Sensor Networks: (A New Classification),” in Australasian Telecommunication
Networks and Applications Conference (ATNAC), Nov. 2011.

Verification Walkthrough

Now that we have a thorough understanding of how each algorithm for smallest last ordering,
graph coloring and backbone selection works, let’s examine the entire simulation on a graph. The
following walkthrough is run on a random geometric graph drawn on a unit square with n = 20
vertices and R = .40 maximum connection distance. This graph has 136 distinct pair-wise edges,
a minimum degree of 2, a maximum degree of 11 and average degree of 6.8.

We begin with smallest last ordering as it forms the basis for all subsequent operations
performed in the simulation. The first figure in the series, labeled with a white “1” in the upper
left corner is the initial state of the graph before any deletions have been performed. The vertex
with the minimum current degree is outlined with a red circle and is the next vertex to be deleted
in all figures in the series. The vertex outlined in figure 1 is the overall minimum degree vertex
in the graph and will be the first vertex that is deleted, in this case that degree is 2. Because this
vertex is the first to be deleted, it will be the last vertex in the final smallest last ordering.

Figure 15 should be noted as the terminal clique, which is found when each remaining vertex has
the same degree. From this point on each remaining vertex will continue to have consistent
degrees after each subsequent deletion. This behavior can be clearly seen in the degree plots

provided for the benchmarks as the “final plunge” where every vertex approaches degree 0
simultaneously. Figure 20 shows the final vertex to be deleted. This vertex will be the first in the
resulting smallest last ordering. By examining the series of figures above we can see that vertices
of minimum degree are being deleted correctly in sequence until no vertices remain and that our
resulting smallest last ordering is correct and can be found in O(|V|+|E|) time.

The next step in the simulation is to color the graph by making use of the smallest last ordering
determined in the process above. In the following figures, the next vertex to be colored (the next
vertex in the smallest last ordering) is outlined with a red circle. Note that the first vertex to be
colored is the last node we deleted in the process above, and that each following vertex will be
colored in the reverse order that we deleted them. Each vertex is assigned the “lowest” available
color that is not already assigned to one of its neighbors in traditional graph coloring fashion.

We see that the graph can be completely colored using 6 distinct colors.

The final step in the simulation is to generate some suitable backbones from the coloring
determined in the process above. A backbone is a connected bipartite subgraph consisting of no
more than 2 colors (hence bipartite) that will be the main trunk for communication in the
wireless sensor network. This project specifically asks for the two best backbones that can be

generated from the largest 4 color classes. In this case colors orange, turquoise and hot pink all
have 4 vertices in their classes and color salmon red has 3 vertices in its color class making them
the 4 largest color classes in the graph. These 4 colors will each be combined and all 6 possible
combinations of colored vertices will be examined to determine the best two backbones with the
highest domination percentage. Each pairing of colors is subjected to a component search such
that only the largest connected component is submitted for comparison against other pairing (its
not a backbone if its not connected!). The two pairings that result in the highest vertex coverage
are chosen as the best backbones.

Backbone 1 (left) contains 9 vertices, 11 edges and has 100% vertex coverage. Backbone 2
(right) contains 8 vertices, 7 edges and has 100% vertex coverage. Coverage is determined by
counting the number of vertices that have access to the backbone compared to the complete set
of vertices in the graph. It is tempting to think that despite the fact that both backbones have
100% coverage, backbone 2 is superior when compared to backbone 1 because it uses a lower
percentage of the overall vertices. In the context of wireless sensors this may be true when
considering things like power consumption. However, it is important to remember that we are
trying to find the best possible communication backbone. Backbone 1 has several cycles or
“faces” meaning that there is more than 1 path to most nodes reducing communication
bottlenecks so, in fact, it may be more desirable.

There are several interesting metrics that can in addition to the figures provided above, help us to
better understand the features of our graph and if our algorithm is performing correctly. One such
metric is original degree compared to degree when deleted.

This plot is in smallest last order, so the last vertex to be
deleted is the first point plotted. We can see the “final”
plunge to 0 which consists of 6 points, indicating the
terminal clique. This is consistent with our figures
displayed above and is a good indication that our
algorithm is performing correctly. We can also see that
degree when deleted is more stable than original degree
and that there are no anomalies or random spikes which
is another good indication that our simulation is
performing as expected.

Reduction!To!Practice!

Data Structures

I chose to implement this project in Python which, unlike many other languages, limits its users
to only a handful of “core” data structures. These include lists, dictionaries, tuples and sets. All
other data structures are generated as a composition of these containers. Most python containers
are really just a hash map at their core, meaning that access time is near constant for almost all
operations in Python with the obvious exception of iterating over a collection. With this in mind
the first data structure we will consider is that for a single point in any of the RGGs. Each point
is represented as a triple for 2D graphs or a 4-tuple for 3D graphs. In python some sample points
might look like the following:

2D_point)=)(pointID,x,y))

3D_point)=)(pointID,x,y,z))
)

In the actual implementation a list of N points is generated and is then passed to a method that
will determine the adjacency of the set of points. PointIDs are generated sequentially starting at 0
so that fast lookup of point coordinates can be done at any time by simple indexing into the list
with whatever vertex you are interested in. Point adjacency information is stored in an auxiliary
data structure to simplify output of CSVs and allow us to avoid passing around a single
extremely large data structure that contains every piece of information required in the project
when only a small subset of that information is required to completed the next step in the
simulation (remember that Python does not provide the user with direct access to pointers!).
Adjacency information is stored in a dictionary (equivalent to a hash map in most languages)
where the key is the vertex in question and the value is a list containing the vertex in question’s
neighbors. A vertex is considered a neighbor of another vertex if it is within some distance R of
the vertex being considered. The dictionary structure allows near constant time lookup of any
vertex’s neighbors which is key in ensuring that our simulation runs as quickly as possible.
Additionally, adjacency lists of this type avoid storing irrelevant information such as which
vertices are not neighbors of the vertex in question as would happen when using an adjacency
matrix. Therefore, this representation of adjacency information is favorable because it provides
extremely fast lookup and avoids using any unnecessary memory. An example adjacency list for
the points 0,1,2,3 could be declared in Python as follows:

adjList)=){)
) 0:[1,2],)

1:[0,3],)
2:[0,3],)
3:[1,2],)

}??????????)
Of course in practice the adjacency list is determined programmatically by evaluating each point
and all points within distance R of it. It should be noted that Python will allow us to see if any
vertex is a member of the neighbors list in constant time because under the hood it is a hash set.
For this reason, neighbors need not be in any particular order. Coloring information is stored in
yet another dictionary (again for modularity) where the key is the vertex in question and the

value is an integer corresponding to the color assigned to that node. So given a pointID it is
possible to look up the coordinates of a point, the color of a point and the adjacent vertices of
point in constant time. This makes processing all vertices in the graph a very efficient and speedy
operation. Any remaining data structures used in the project will be described as individual
algorithms are introduced.

Point Generation and Connection Determination
The first step in the program is to generate the points that will make up the RGG. The x, y and z
coordinates for each point are generated using simple uniform real distribution random number
generators which can be found in the Python standard library. These generators produce
uniformly distributed pseudorandom real numbers in the range [0.0,1.0]. In the case of the 2D
graphs on the unit square, randomly generating coordinates in the specified range is all that is
required as it is impossible for a point to have invalid coordinates. However, graphs on the unit
disk and unit sphere require some transformation to ensure that the points generated are indeed
valid. For the disk, one possible solution is to randomly generate pairs as with the unit square
and reject them if they have a distance greater than the radius away from the origin. However
this is a probabilistic method that does not guarantee termination (although it almost certainly
will) and could affect how random the points actually are on the disk, so I decided to instead use
a method that will always produce a valid point. This involves picking random x,y coordinates as
before and then transforming them using some simple trigonometric operations. A random point
on the unit disk can be generated using the following logic:

a)=)random.uniform(0,1.0))
)))) b)=)random.uniform(0,1.0))
)))) if)b)<)a:)
))))) swap(a,b))
)))) x)=)b)*)cos(2*pi*a/b))
)))) y)=)b)*)sin(2*pi*a/b))

In the case of 3D graphs on the unit sphere we also have multiple options for point generation.
One such method, was discussed at length in class and involved picking points that fall within
the unit sphere and rejecting those that don’t and then normalizing the distance vector to unit
since the origin is at (0,0,0). This method does indeed generate uniformly distributed random
points on the surface of a sphere but is again probabilistic in nature. Over the course of my
research for this project I discovered a different method that was developed by Archimedes
almost 2,000 years ago. His method is based on the relationship between a cylinder and a sphere
in that “if a point is randomly distributed on the cylinder, its inverse axial projection will be
uniformly distributed on the sphere” [8]. If we consider that a unit sphere has a radius of one we
will quickly realize that the domain of the unit sphere inscribed in a cube is [-1.0,1.0]. So to
generate random points about the surface of the unit sphere we simply generate points by first
getting a value between -1.0 and 1.0 and then placing them on a cylinder by multiplying it by a
value in the domain [0,2π] and then projecting it about its inverse axis we will have a point that
is uniformly distributed about the surface of the unit sphere. In my implementation this is done
with following logic:

theta)=)2*pi*random.uniform(0,1.0))

phi)=)acos(2*random.uniform(0,1.0)?1.0))
x)=)cos(theta)*sin(phi))
y)=)sin(theta)*sin(phi))
z)=)cos(phi))
)

This approach has the added benefit of being substantially faster than the rejection method
discussed in class. I ran several tests using the Python “TimeIt” library which is specifically
designed to provide extremely accurate timing data for functions. I ran the test generating a list
of 10,000 points using both methods 10,000 times. On average Archimedes’ method was about
3.8x faster than the rejection method. All point generation methods are !(1) for a single point
and !(#) when generating a graph of size n.

Generating points is an extremely efficient operation is considered trivial. However determining
connection between points is a more complex process. One solution is all-pairs testing where we
check the Euclidean distance between each point and record adjacency if this distance in less
than R. However this is ridiculous for graphs without an extremely large value for R as you will
be comparing points that could not possibly be connected because they are extremely far away.
This project makes use of the “cell method” to more intelligently choose which points should be
compared. This is accomplished by segmenting the points into cells of size R x R. This cell is
then compared to at most 5 other surrounding cells drastically reducing the number of
comparisons needed to determine adjacency. In the actual implementation we partition the points
into a cell map by first sorting them by their x coordinate. The points are then segmented into
“sweeps” by simply checking if their x coordinate is less than a constant multiplied by R. We can
determine the total number of sweeps needed by taking the ceiling of R/width of the square
(which is unit in this case). Then we sort each sweep’s coordinates by their y value and segment
them again so now we have cells. One thing that is nice about this approach is that we can reuse
the segmenting method for an arbitrary level of dimensions. The “block” method is also used on
3D graphs and simply segments that points an additional time by their z coordinate. Sorting is
done using the Python standard sort which is extremely optimized, but still has a relatively
expensive time complexity of !(|*| lg |*|). But by avoiding all pairs-testing which has a time
complexity of !(#$) we reduce our time complexity to !(#$&$) where r is a value equal to or
less than 1. In the case of the “block method” the time complexity is !(#$&'). However, in the
theoretical worst case where every node is connected to every other node these methods still run
in !(#$). In the average case this method is sufficiently efficient for large graphs.

Smallest Last Ordering

The Smallest Last Ordering is a way of sequencing the vertices in the graph such that vertex -.
has the minimum degree in the remaining subgraph of vertices -/, -$, …2, -3where k ≤ n. By
ordering the vertices in this fashion we can easily color all vertices in the RGG to determine sets
to be used during the backbone selection process.

Finding the Smallest Last Ordering of a set of vertices is accomplished by repeatedly applying
the following four steps until there are no vertices remaining in the graph:

1.! Find the vertex with the minimum degree
2.! Delete this vertex from the set in consideration

3.! Update all previously adjacent vertices such that their degree is equal to degree-1
4.! Record the deleted vertex in the last available spot in the smallest last ordering list

The smallest last ordering list is of size n because we must record the order of every vertex in the
graph. The ordering list is built from the tail of the list to the head. By simply analyzing each
step of this process we can see that Smallest Last Ordering can be done in ! * + 5 time.
However, this running time is entirely dependent on our ability to find the minimum degree
vertex in an efficient manner. To do this we instantiate the ordering process by first partitioning
each vertex into buckets by their degree. This can be done in !(*) time and does not require an
initial sort to be performed. In my actual implementation this is achieved with the following
logic:

for)node)in)adjList.items():)
))))) degree)=)len(node[1]))
))))) buckets[degree])=)node[0])

In Python len() is a constant time operation so this process can clearly be seen to run in !(*)
time. The “buckets” structure shown in the above code is a dictionary of queues. Queues are used
to ensure the nodes are being processed in the correct order and that a node does not
unexpectedly drop from extremely high degree to extremely low degree by nature of being
randomly chosen from the bucket with minimum degree. This process also makes it trivial to
find the largest and smallest degree node in the graph by picking the first and last bucket and the
first and last element of these buckets respectively (all constant time operations).

To begin the Smallest Last Ordering process we first select and delete the vertex with minimum
degree which as previously described can be done by choosing the first bucket and then popping
the first element off of that queue. This is always a constant time operation as empty buckets are
deleted as they become empty. Once found, the minimum degree vertex is deleted from the
bucket and its neighbors degrees are update. This is trivial as we simply iterate through the
deleted node’s neighbors in the adjacency list and if they have not yet been deleted we reduce
their degree by one. When there is only 1 bucket remaining, its contents will be the members of
the terminal clique as they must all have the same degree.

Degree reduction is accomplished by moving the affected vertex down 1 to the next lowest
bucket. This can be done for each neighbor of the deleted vertex with the following logic:

)) buckets[minDegree].remove(selectedVertex))
)) for)neighbor)in)adjList[selectedVertex]:)
))) if)neighbor)in)buckets:)
)))) buckets[neighbor[bucket]].remove(neighbor))
)))) buckets[neighbor[bucket]?1].append(neighbor))
))) if)len(buckets[neighbor[bucket]))==)0:)
)))) del)buckets[neighbor[bucket]])
)) slOrdering[curr])=)selectedVertex)
)) curr)?=)1)
)

Because all structures used above are hash based they all operate in near constant time and add
almost no overhead to the process. Additionally, this ensure the lowest bucket always contains
the minimum degree node and can be accessed in constant time. So by simply analysis this
process will run in !(5) time. In the above code we are also recording the deleted node in the
smallest last ordering which you will note is from back to front, also in constant time. This
means that we are filling the list as we deleted nodes and at termination the list will be in order
and complete.

If we carefully examine each step in the algorithm we will see that partition into buckets takes
!(*) time. Finding the minimum degree vertex, deleting it and updating its neighbors is done
in near constant time. When repeatedly run until all vertices have been processed this step can be
done in !(5) time. Thus the entire Smallest Last Ordering process runs in !(* + 5) time
as we visit each node and each edge exactly once. This process runs in !(*) extra space as we
will need to record the resulting order of the vertices in a list.

Graph Coloring Algorithm

Now that we have gotten the Smallest Last Ordering we can apply a graph coloring algorithm to
generate independent sets that we will later use for backbone selection. This is a traditional
greedy coloring algorithm that is often referred to as the “Grundy coloring algorithm” [10]. This
algorithm assigns the lowest available color to a vertex being considered. In this context
“available” simply means no vertex connected to the one being considered is currently using that
color.

Color assignment begins with the first element in the Smallest Last Order, which is the vertex
that was deleted last in the Smallest Last Ordering process described above and assign it “color
0.” We then continue to iterate over the Smallest Last Order coloring nodes as we go. If no color
is currently available we add a new color to the pool and assign the vertex under consideration
this color. Each time a new color is added, it is currently the maximum value color. When we
arrive at each new vertex to be colored we get the list of its neighbors from the adjacency list
dictionary in constant time and also get the colors of each of these vertices from the coloring
dictionary. If any of its neighbors are not currently colored, that neighbor is not considered. The
lowest color that is not currently assigned to one of these neighbors is assigned to the vertex
under consideration.

Since we are going through each edge and each vertex exactly once and we are only adding new
colors as they are needed we can see that this coloring algorithm runs in !(* + 5) time. We
can also efficiently determine the lowest color that is unused with the following logic:
)

for)color)in)itertools.count():)
)))) if)color)not)in)neighbor_colors:)
))))) break)

Where neighbor_colors is a list containing the colors of all neighbors of the vertex being
considered. This process counts up from zero and if that number (color) is not in neighbor_colors
it is assigned to the vertex under consideration. The graph coloring algorithm runs in !(6) space

complexity where m is the maximum number of colors needed to color the graph. An upper
bound on the number of colors needed to successfully color the graph is equal to the maximum
minimum-degree in the graph + 1. This is another great metric that can be used to ensure our
program is working properly.

One advantage (and the primary reason) of using the Smallest Last Order to color the graph is
that minimum degree nodes will be colored last ensuring that the vertices colored first will be of
large degree. Because of this, the larger degree vertices and thereby the best nodes to be in a
backbone will be colored first, thus aggregating the largest color sets towards the lower colors,
making backbone selection much easier.

Bipartite Backbone Selection

The final step in the project is to generate bipartite backbones from the coloring information
determined above. As previously mentioned a backbone is a connect bipartite subgraph that will
be the main trunk for communication in the wireless sensor network. In the optimal case, every
node will have access to a node in the backbone which is equivalent to the backbone having
vertex coverage equal to 100%. It then stands to reason that the best metric for determining the
quality of a selected backbone is its vertex coverage (also known as domination percentage).
Backbone generation occurs by selecting the largest color classes and joining their vertices
according the same rule as for the entire RGG (vertices are connected if they are less than or
equal to R from each other). Because we used the Smallest Last Order to color our graph we can
say with a high degree of certainty that the largest color class will likely be one of the lowest
colors used. It would stand to reason then that the backbone will almost always be comprised of
vertices in color set 0 or 1 but this is not always the case. Instead we must test the combinations
of the top k colors where k = 2*number of backbones desired.

This project specifically asks for the top two backbones that be generated from the top 4 color
classes. Because there are 4 colors, there a 6 possible bipartite combinations of colors and each
must be tested. Getting the vertices that correspond to each color class is extremely fast as we
can make use of our coloring hash map data structure that maps each vertex to its color in near
(amortized) constant time.

For each of the 6 combinations generated we must analyze the quality of the resulting backbone.
Recall that a backbone must be connected to be considered a backbone, so the first step is to
determine the size of the largest connected component in the graph. We do this by performing a
component search on the bipartite subgraph that we are considering. This is done by a simple
breadth first search starting from any vertex in the graph until it has reached all the nodes that it
can. If all vertices in the bipartite graph were not reached, the number that were is recorded and
this is noted as 1 component. The process is then reinitiated on an arbitrary remaining node until
it has reached all the nodes it can. The process is repeated until every vertex has been visited
once and thus all components have been determined. We would then return the largest connected
component in that particular bipartite subgraph according to the project description. In most
cases this “largest” component will have the highest domination percentage. However consider
the edge case where there are two components of equal size. It would then be better to return the
component with the highest vertex coverage instead of size. My implementation does this instead

to help ensure that the best possible backbone is being chosen every time. After component
search is run the final step is to choose the two resulting backbones that have the highest vertex
coverage. This selection process is trivial and occurs in constant time ultimately returning the
best two backbones achievable using this procedure. Vertex coverage is calculated by examining
all vertices that can be reached by each vertex in the backbone and dividing that number by the
total number of vertices in the graph. This is done in !(7) time where k is the number of
vertices in the backbone. Technically speaking the running time of this process is bounded by
!(* + 5) due to the component search, but in practice it is likely to run in a more favorable
time because if a component has more than 50% of the vertices than it is automatically assumed
to be the largest connected component in that bipartite subgraph. This process requires ! *
extra space to store information about which vertices are members of which backbone.

Additional Verification

To ensure that my project generates results correctly and efficiently, I decided to run a few
additional benchmarks of my own in addition to those required in the project description. These
benchmarks were all substantially larger than any of the 10 benchmarks we were asked to
perform. I have selected only one of these, with 100,000 vertices, to include in my project
appendix as I am already dangerously near the page limit. I have run my simulation with as many
as 128,000 vertices with success. Unfortunately, with graphs over 100,000 nodes Microsoft excel
was unable to plot the original vs deleted degree on my computer. It is my hope that the
inclusion of this additional benchmark, which are included in the appendix at the end of the
paper will convince the reader that the overall process scales incredibly well!

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 1: Square with n = 1000 vertices and R ≈ .10

ID# 1" RGG#Type# Square"
Num#Vertices# 1000" Superior#Backbone# Backbone1"

R# 0.099" Backbone1#Vertices# 152"
Desired#Avg#Degree# 30" Backbone1#Edges# 167"

Num#Edges# 14069" Backbone1#Coverage# 99.60%"
Min#Degree# 5" Backbone2#Vertices# 154"
Avg#Degree# 28.138" Backbone2#Edges# 177"
Max#Degree# 48" Backbone2#Coverage# 99.30%"

Max#Degree#When#Deleted# 19" Max#Color#Size# 80"
Number#of#Colors# 19" Terminal#Clique#Size# 19"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 2: Square with n = 4000 vertices and R ≈ .06

ID# 2" RGG#Type# Square"
Num#Vertices# 4000" Superior#Backbone# Backbone1"

R# 0.057" Backbone1#Vertices# 450"
Desired#Avg#Degree# 40" Backbone1#Edges# 536"

Num#Edges# 77969" Backbone1#Coverage# 99.75%"
Min#Degree# 7" Backbone2#Vertices# 463"
Avg#Degree# 38.985" Backbone2#Edges# 555"
Max#Degree# 63" Backbone2#Coverage# 99.65%"

Max#Degree#When#Deleted# 30" Max#Color#Size# 239"
Number#of#Colors# 30" Terminal#Clique#Size# 30"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 3: Square with n = 4000 vertices and R ≈ .07

ID# 3" RGG#Type# Square"
Num#Vertices# 4000" Superior#Backbone# Tie"

R# 0.070" Backbone1#Vertices# 337"
Desired#Avg#Degree# 60" Backbone1#Edges# 424"

Num#Edges# 114817" Backbone1#Coverage# 99.98%"
Min#Degree# 17" Backbone2#Vertices# 338"
Avg#Degree# 57.409" Backbone2#Edges# 422"
Max#Degree# 89" Backbone2#Coverage# 99.98%"

Max#Degree#When#Deleted# 38" Max#Color#Size# 171"
Number#of#Colors# 35" Terminal#Clique#Size# 30"

Original Graph (Without Edges)

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 4: Square with n = 16000 vertices and R ≈ .035

ID# 4" RGG#Type# Square"
Num#Vertices# 16000" Superior#Backbone# Backbone1"

R# 0.035" Backbone1#Vertices# 1308"
Desired#Avg#Degree# 60" Backbone1#Edges# 1671"

Num#Edges# 473825" Backbone1#Coverage# 99.81%"
Min#Degree# 14" Backbone2#Vertices# 1315"
Avg#Degree# 59.228" Backbone2#Edges# 1685"
Max#Degree# 88" Backbone2#Coverage# 99.79%"

Max#Degree#When#Deleted# 38" Max#Color#Size# 671"
Number#of#Colors# 37" Terminal#Clique#Size# 31"

Original Graph (Without Edges)

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 5: Square with n = 64000 vertices and R ≈ .017

ID# 5" RGG#Type# Square"
Num#Vertices# 64000" Superior#Backbone# Backbone1"

R# 0.017" Backbone1#Vertices# 5225"
Desired#Avg#Degree# 60" Backbone1#Edges# 6781"

Num#Edges# 1921111" Backbone1#Coverage# 99.89%"
Min#Degree# 14" Backbone2#Vertices# 5200"
Avg#Degree# 60.035" Backbone2#Edges# 6676"
Max#Degree# 96" Backbone2#Coverage# 99.79%"

Max#Degree#When#Deleted# 40" Max#Color#Size# 2645"
Number#of#Colors# 38" Terminal#Clique#Size# 34"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 6: Disk with n = 4000 vertices and R ≈ .07

ID# 6" RGG#Type# Disk"
Num#Vertices# 4000" Superior#Backbone# Backbone1"

R# 0.070" Backbone1#Vertices# 331"
Desired#Avg#Degree# 60" Backbone1#Edges# 421"

Num#Edges# 115513" Backbone1#Coverage# 99.95%"
Min#Degree# 18" Backbone2#Vertices# 332"
Avg#Degree# 57.757" Backbone2#Edges# 424"
Max#Degree# 84" Backbone2#Coverage# 99.80%"

Max#Degree#When#Deleted# 39" Max#Color#Size# 168"
Number#of#Colors# 39" Terminal#Clique#Size# 38"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 7: Disk with n = 4000 vertices and R ≈ .10

ID# 7" RGG#Type# Disk"
Num#Vertices# 4000" Superior#Backbone# Tie"

R# 0.098" Backbone1#Vertices# 187"
Desired#Avg#Degree# 120" Backbone1#Edges# 246"

Num#Edges# 223118" Backbone1#Coverage# 100.00%"
Min#Degree# 49" Backbone2#Vertices# 182"
Avg#Degree# 111.559" Backbone2#Edges# 240"
Max#Degree# 163" Backbone2#Coverage# 100.00%"

Max#Degree#When#Deleted# 70" Max#Color#Size# 95"
Number#of#Colors# 63" Terminal#Clique#Size# 60"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 8: Disk with n = 4000 vertices and R ≈ .07

ID# 8" RGG#Type# Sphere"
Num#Vertices# 4000" Superior#Backbone# Tie"

R# 0.070" Backbone1#Vertices# 322"
Desired#Avg#Degree# 60" Backbone1#Edges# 416"

Num#Edges# 121741" Backbone1#Coverage# 99.95%"
Min#Degree# 35" Backbone2#Vertices# 319"
Avg#Degree# 60.871" Backbone2#Edges# 418"
Max#Degree# 89" Backbone2#Coverage# 99.95%"

Max#Degree#When#Deleted# 38" Max#Color#Size# 163"
Number#of#Colors# 35" Terminal#Clique#Size# 33"
Backbone1#Faces# 96" Backbone2#Faces# 101"

Original Graph (Without Edges)

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 9: Disk with n = 16000 vertices and R ≈ .05

ID# 9" RGG#Type# Sphere"
Num#Vertices# 16000" Superior#Backbone# Tie"

R# 0.049" Backbone1#Vertices# 708"
Desired#Avg#Degree# 120" Backbone1#Edges# 979"

Num#Edges# 967081" Backbone1#Coverage# 99.99%"
Min#Degree# 86" Backbone2#Vertices# 705"
Avg#Degree# 120.885" Backbone2#Edges# 989"
Max#Degree# 168" Backbone2#Coverage# 99.99%"

Max#Degree#When#Deleted# 88" Max#Color#Size# 356"
Number#of#Colors# 62" Terminal#Clique#Size# 52"
Backbone1#Faces# 273" Backbone2#Faces# 286"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

Benchmark 10: Disk with n = 64000 vertices and R ≈ .025

ID# 10" RGG#Type# Sphere"
Num#Vertices# 64000" Superior#Backbone# Backbone"1"

R# 0.025" Backbone1#Vertices# 2836"
Desired#Avg#Degree# 120" Backbone1#Edges# 3931"

Num#Edges# 3868443" Backbone1#Coverage# 99.988%"
Min#Degree# 85" Backbone2#Vertices# 2835"
Avg#Degree# 120.889" Backbone2#Edges# 3928"
Max#Degree# 168" Backbone2#Coverage# 99.986%"

Max#Degree#When#Deleted# 85" Max#Color#Size# 1428"
Number#of#Colors# 62" Terminal#Clique#Size# 56"
Backbone1#Faces# 1097" Backbone2#Faces# 1095"

Original Graph

Min Degree Node (Blue) and

Maximum Degree Node (Red)

Backbone 1

Backbone 2

APPENDIX(

Benchmark 11: Disk with n = 100000 vertices and R ≈ .014

ID# 7" RGG#Type# Square"
Num#Vertices# 100000" Superior#Backbone# Backbone1"

R# 0.014" Backbone1#Vertices# 8073"
Desired#Avg#Degree# 60" Backbone1#Edges# 10402"

Num#Edges# 3014338" Backbone1#Coverage# 99.80%"
Min#Degree# 16" Backbone2#Vertices# 8106"
Avg#Degree# 60.287" Backbone2#Edges# 10446"
Max#Degree# 93" Backbone2#Coverage# 99.78%"

Max#Degree#When#Deleted# 39" Max#Color#Size# 4137"
Number#of#Colors# 38" Terminal#Clique#Size# 32"

The purpose of this additional benchmark is to show that my program can handle
generating graphs that are substantially larger than what was requested in the
project description. My program had no problems what so ever generating or
visualizing a graph of this size. In quite a humorous twist, it was Microsoft Excel
that had the problem as it could barely handle drawing the original vs deleted
degree plot. Perhaps I should use R or MatPlotLib for large graphs in the future!

Look at how smooth the color and degree distributions are!

