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Executive!Summary!
 
Introduction and Summary 
Wireless Sensor networks have become a hot topic in research communities in recent years as 
improvements in technology and reductions in manufacturing costs have made their creation and 
deployment increasingly economically feasible. Technologies such as Wi-Fi, ZigBee and 
Bluetooth are all commonly used protocols in wireless sensor networks and have been subject to 
numerous implementation and hardware improvements over their lifetime resulting in sensors 
that are smaller, cheaper and more energy efficient. This coupled with their unlimited versatility 
and lack of physical connections have made wireless sensors an increasingly viable choice for 
interconnected ad-hoc networks [1].  
 
This paper details a project that models ad-hoc networks of wireless sensors of varying scale 
across a variety of geographic areas. The project models these networks by creating random 
geometric graphs (RGG) of varying size, degree and type and interconnecting vertices if they are 
within a distance R of one another [2]. In the context of wireless sensors R is the maximum 
broadcast range of any single sensor and thus determines how far away any two sensors must be 
to communicate. Determining connections between vertices in the graph is not a trivial task and 
can be a very expensive process if great care is not taken when doing so. This project makes use 
of several methods for decreasing the time and number of comparisons required to determine 
vertex adjacency which will be discussed in detail in a later section. We apply the Smallest Last 
Ordering algorithm [3] and a graph coloring procedure [4][10] to identify high quality candidates 
for communication backbones in the graph. A backbone is a bipartite subgraph of the overall 
RGG, or sensor network, that sufficiently covers all vertices that make up the overall network. 
Ideally we would like to find backbones that allow any sensor in the network to communicate 
with a sensor in the backbone in no more than one hop (100% coverage). The backbones must be 
bipartite because this ensures that no two connected vertices share the same “color” which 
practically translates to sensor broadcast frequency. With no overlapping frequencies in the 
backbone we can ensure that interference is not an issue [11]. 
 
Finding high quality candidates for backbones is by no means a trivial task and brute force 
techniques would quickly prove to be impractical in graphs or networks of sufficient scale. This 
is particularly true given that backbones need to be generated extremely quickly as in practice 
nodes may enter or exit the network at any time due to power failure, movement of the sensor or 
an unlimited number of other reasons. Also wireless sensors often lack significant computational 
power in an effort to make them more energy efficient or reduce their size so backbone 
determination must be made as simple as possible. Finally, manual data collection on sufficiently 
large scale networks is impractical so determining backbones that cover as many sensors as 
possible is of utmost importance. Consider a network with 100,000 nodes and a backbone that 
has 95% coverage. While data from 95% of the network can be pulled from a central location, 
5,000 nodes are not covered by the backbone manual collection or formation of additional 
backbones. For these reasons it is extremely important that high quality backbone generation is a 
scalable process. 
 
 
 



Results 
 
This section presents the results of successfully using a combination of the smallest last ordering 
algorithm, a graph coloring algorithm, and component search to generate communication 
backbones on wireless sensor networks that are modelled by random geometric graphs. The 
entire process is done for 2-dimensional graphs on the unit square and unit disk as well as 3-
dimensional graphs on the unit sphere. In all cases smallest-last ordering is accomplished in 
O(|V|+|E|) time which will be demonstrated in the walkthrough. The graph coloring algorithm 
used, sometimes referred to as the “Grundy coloring algorithm,” also runs in O(|V|+|E|) which is 
quite fast [10]. The component search and backbone selection algorithm is based on breadth-first 
search and runs in O(|V|*|E|) time due to instances where every node is of extremely low degree. 
In practice however this algorithm generally runs substantially closer to O(|E|) time. Each step in 
the overall simulation is quite efficient which allows us to run simulations of very large size in a 
reasonable amount of time. In order to see that these claims are indeed true we have generated 10 
benchmark graphs of varying type, size and average degree that we will apply our entire 
simulation process to. The abbreviated results of these benchmarks can be seen in the following 
table: 
 
Graph#ID# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

N# 1,000! 4,000! 4,000! 16,000! 64,000! 4,000! 4,000! 4,000! 16,000! 64,000!
Desired#Avg#

Degree# 30! 40! 60! 60! 60! 60! 120! 60! 120! 120!

R# 0.099! 0.057! 0.070! 0.035! 0.017! 0.070! 0.098! 0.070! 0.049! 0.025!

Type# Square! Square! Square! Square! Square! Disk! Disk! Sphere! Sphere! Sphere!

Num#Edges# 14,069! 77,969! 114,817! 473,825! 1,921,111! 115,513! 223,118! 121,741! 967,081! 3,868,443!

Min#Degree# 5! 7! 17! 14! 14! 18! 49! 35! 86! 85!

Avg#Degree# 28.138! 38.984! 57.408! 59.228! 60.035! 57.756! 111.559! 60.87! 120.885! 120.889!

Max#Degree# 48! 63! 89! 88! 96! 84! 163! 89! 168! 168!

Num#Colors# 19! 30! 35! 37! 38! 39! 63! 35! 62! 62!
Backbone#
Coverage# 99.60%! 99.75%! 99.98%! 99.81%! 99.89%! 99.95%! 100%! 99.95%! 99.99%! 99.99%!
Execution#

Time# 0.98! 4.13! 4.91! 20.27! 78.14! 5.81! 7.29! 6.32! 27.44! 106.71!
 
The strongest features of this implementation lie in its numerous computational and end user 
experience optimizations. For example, this implementation uses the “cell method” for 2D 
graphs and the “block method” for 3D graphs to reduce the number of comparisons that need to 
be made between pairs of points to determine adjacency. Instead of exhaustively testing all pairs, 
these methods partition the points into cells or blocks of size r and test only the cells or blocks 
where a given point could have a mathematical possibility of having a connection. This reduces 
our comparison bound from !(#$) to the more favorable !(#$&$) as r is always less than 1 or in 
the case of the block method to !(#$&'). Another performance optimization is that graphs are 
visualized using a compressed adjacency list which prevent duplicate edges from being stored 
thus reducing the number of edges to be drawn by a factor of 2 - meaning that we can 
successfully visualize larger graphs with less lag. Finally, my implementation generates points 
on the edge of the sphere using a method described by Archimedes instead of the rejection 



method described in class [8]. My tests between both methods indicate that the Archimedian 
method performs on average about 4x as fast as the rejection method because there are no 
probabilistic elements to this process and it is based entirely on constant time operations. One 
notable end user experience optimization that has been made is how vertex colors are generated 
for visualizations. Instead of prepopulating a list of colors chosen by hand or randomly 
generating colors, my implementation uses the golden ratio to procedurally generate colors that 
are as distant from one another on the color spectrum as mathematically possible [9]. One 
advantage of this approach is that colors are more distinct, making them easier to tell apart from 
one another on the final visualization of the graph. 
 
Programming Environment 
 
Hardware Description –  
Below is a list of pertinent information about the hardware that I used to run my simulation: 

•! Computer: Apple MacBook Pro (Mid 2010) 
•! Processor: Dual Core Intel i7 @ 2.66GHz with Turbo Boost up to 3.3GHz 
•! Memory: 8GB DDR3 RAM @ 1067MHz 
•! Graphics Card: NVIDIA GeForce GT 330M with 512MB VRAM 
•! Secondary Storage: 500GB SATA HDD 
•! Operating System: Mac OSX 10.10.3 (Yosemite) 
•! CPython version 2.7.9 
•! Cython compiler version 0.23.4 
•! Clang compiler version 6.0 based on LLVM 3.5, build clang-600.0.54 

 
Software Description – 
The entire simulation is implemented in Python 2.7. I chose to use python because of its 
flexibility when dealing with complex data types and structures and the fact that it is a garbage 
collected language eliminating many memory issues that can occur without careful attention to 
detail in languages like C++. Python is easy and flexible making it a great choice for any project 
where extremely high performance computation is not necessary. When dealing with graphs 
under 4,000 vertices my simulation has execution times comparable to a C based solution, but as 
the number of vertices increases, the performance rapidly degrades. This is almost entire due to 
the fact that Python runs on a virtual machine and “Python Objects” are not statically typed so 
some computation must be done to determine the exact data type. This means that my python 
based simulation was not scalable and was therefore unacceptable as a final solution for this 
project. In order to dramatically improve execution time, I ran my Python code through a 
program called “Cython” which converts the python directly to C code. C of course runs directly 
on the hardware and generally resulted in execution times that were about 20% of the execution 
time to run the same simulation directly in Python. Cython is a robust and trusted tool, in fact the 
extremely popular and well respected “NumPy” library was written entirely using Cython [7]. 
 
 I chose to use the Processing3 graphics package to visualize the graphs that were output by my 
simulation. Processing3 is an amazing tool that is based in Java and runs on the JVM that can be 
used to draw 2D or 3D images and figures of just about anything you want [6]. It provides very 
easy to use methods for drawing points and lines allowing me to get beautiful visualizations of 
my graphs in a very small amount of time. Because processing runs on the JVM, it is slower than 



some comparable libraries written in C++ (openFramework or QT to name two) but is extremely 
optimized allowing for very speedy drawing times, even with graphs with many thousand 
vertices. Processing3, the most recent version of Processing, has added support for a Python 
“mode” which I mistakenly thought would be a good idea to use [6]. It turns out that this Python 
code is passed through another tool called Jython that converts and runs python code on the 
JVM. This is great because you can write python code, making the drawing process near 
effortless, but you cannot use any of the standard python libraries because at the end of the day 
you are running Java, not python. So in quite an interesting turn, my simulation and visualization 
code is written entirely in Python, but not a single line is actually executed in the Python 
environment – though this ended up being a good thing because both conversions resulted in 
running times not achievable using Python as is. It should be noted that because I use two 
different programs for my simulation: one to generate the data and another to visualize it, I am 
using CSV files to pass data from the generation program to the visualization program. This also 
makes it easy to plot figures such as original degree vs degree when deleted with a high degree 
of ease. 
 
The simulation code was written to be as memory efficient as possible so that large graphs can 
be generated without placing excessive load on the machine or worrying about using a 
significant amount of swap memory which would absolutely tank performance. Below are 3 
plots showing the memory and CPU utilization of some sample simulations of size 5,000, 10,000 
and 15,000 vertices. 
 

 
 
From these graphs we can see that size of the executing portion of the code begins at about 
161KB regardless of number of vertices generated which means our program has a very small 
footprint. Generation of a 5,000 vertex simulation required about 175KB of memory and 2.6MB 
of disk to complete execution. Generation of a 10,000 vertex simulation required about 193KB 
of memory to complete execution. Generation of a 15,000 vertex simulation required about 
205KB of memory to complete execution. We can see that the amount of memory needed does 
not grow dramatically with the problem size ensuring that we can safely generate graphs of 
extremely large size. The first ascending leg of these simulations corresponds to graph 
generation, the spike occurs during the smallest last and backbone selection process as numerous 
new pieces of information are generated. The final stable leg of the process corresponds to when 
the data is being written out to CSV’s as no new memory is required. Microsoft Excel was used 
to plot anything not done in Processing3. 
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Verification Walkthrough 
 
Now that we have a thorough understanding of how each algorithm for smallest last ordering, 
graph coloring and backbone selection works, let’s examine the entire simulation on a graph. The 
following walkthrough is run on a random geometric graph drawn on a unit square with n = 20 
vertices and R = .40 maximum connection distance. This graph has 136 distinct pair-wise edges, 
a minimum degree of 2, a maximum degree of 11 and average degree of 6.8. 
 
We begin with smallest last ordering as it forms the basis for all subsequent operations 
performed in the simulation. The first figure in the series, labeled with a white “1” in the upper 
left corner is the initial state of the graph before any deletions have been performed. The vertex 
with the minimum current degree is outlined with a red circle and is the next vertex to be deleted 
in all figures in the series. The vertex outlined in figure 1 is the overall minimum degree vertex 
in the graph and will be the first vertex that is deleted, in this case that degree is 2. Because this 
vertex is the first to be deleted, it will be the last vertex in the final smallest last ordering. 
 

 

 

 

 
 
Figure 15 should be noted as the terminal clique, which is found when each remaining vertex has 
the same degree. From this point on each remaining vertex will continue to have consistent 
degrees after each subsequent deletion. This behavior can be clearly seen in the degree plots 



provided for the benchmarks as the “final plunge” where every vertex approaches degree 0 
simultaneously. Figure 20 shows the final vertex to be deleted. This vertex will be the first in the 
resulting smallest last ordering. By examining the series of figures above we can see that vertices 
of minimum degree are being deleted correctly in sequence until no vertices remain and that our 
resulting smallest last ordering is correct and can be found in O(|V|+|E|) time. 
 
The next step in the simulation is to color the graph by making use of the smallest last ordering 
determined in the process above. In the following figures, the next vertex to be colored (the next 
vertex in the smallest last ordering) is outlined with a red circle. Note that the first vertex to be 
colored is the last node we deleted in the process above, and that each following vertex will be 
colored in the reverse order that we deleted them. Each vertex is assigned the “lowest” available 
color that is not already assigned to one of its neighbors in traditional graph coloring fashion. 
 

 

 

 

 
 
We see that the graph can be completely colored using 6 distinct colors. 
 
The final step in the simulation is to generate some suitable backbones from the coloring 
determined in the process above. A backbone is a connected bipartite subgraph consisting of no 
more than 2 colors (hence bipartite) that will be the main trunk for communication in the 
wireless sensor network. This project specifically asks for the two best backbones that can be 



generated from the largest 4 color classes. In this case colors orange, turquoise and hot pink all 
have 4 vertices in their classes and color salmon red has 3 vertices in its color class making them 
the 4 largest color classes in the graph. These 4 colors will each be combined and all 6 possible 
combinations of colored vertices will be examined to determine the best two backbones with the 
highest domination percentage. Each pairing of colors is subjected to a component search such 
that only the largest connected component is submitted for comparison against other pairing (its 
not a backbone if its not connected!). The two pairings that result in the highest vertex coverage 
are chosen as the best backbones.  
 

        
 

Backbone 1 (left) contains 9 vertices, 11 edges and has 100% vertex coverage. Backbone 2 
(right) contains 8 vertices, 7 edges and has 100% vertex coverage. Coverage is determined by 
counting the number of vertices that have access to the backbone compared to the complete set 
of vertices in the graph. It is tempting to think that despite the fact that both backbones have 
100% coverage, backbone 2 is superior when compared to backbone 1 because it uses a lower 
percentage of the overall vertices. In the context of wireless sensors this may be true when 
considering things like power consumption. However, it is important to remember that we are 
trying to find the best possible communication backbone. Backbone 1 has several cycles or 
“faces” meaning that there is more than 1 path to most nodes reducing communication 
bottlenecks so, in fact, it may be more desirable. 
 
There are several interesting metrics that can in addition to the figures provided above, help us to 
better understand the features of our graph and if our algorithm is performing correctly. One such 
metric is original degree compared to degree when deleted. 
 

This plot is in smallest last order, so the last vertex to be 
deleted is the first point plotted. We can see the “final” 
plunge to 0 which consists of 6 points, indicating the 
terminal clique. This is consistent with our figures 
displayed above and is a good indication that our 
algorithm is performing correctly. We can also see that 
degree when deleted is more stable than original degree 
and that there are no anomalies or random spikes which 
is another good indication that our simulation is 
performing as expected. 



Reduction!To!Practice!
 
Data Structures 
 
I chose to implement this project in Python which, unlike many other languages, limits its users 
to only a handful of “core” data structures. These include lists, dictionaries, tuples and sets. All 
other data structures are generated as a composition of these containers. Most python containers 
are really just a hash map at their core, meaning that access time is near constant for almost all 
operations in Python with the obvious exception of iterating over a collection. With this in mind 
the first data structure we will consider is that for a single point in any of the RGGs. Each point 
is represented as a triple for 2D graphs or a 4-tuple for 3D graphs. In python some sample points 
might look like the following: 

 
2D_point)=)(pointID,x,y))

3D_point)=)(pointID,x,y,z))
)

In the actual implementation a list of N points is generated and is then passed to a method that 
will determine the adjacency of the set of points. PointIDs are generated sequentially starting at 0 
so that fast lookup of point coordinates can be done at any time by simple indexing into the list 
with whatever vertex you are interested in. Point adjacency information is stored in an auxiliary 
data structure to simplify output of CSVs and allow us to avoid passing around a single 
extremely large data structure that contains every piece of information required in the project 
when only a small subset of that information is required to completed the next step in the 
simulation (remember that Python does not provide the user with direct access to pointers!). 
Adjacency information is stored in a dictionary (equivalent to a hash map in most languages) 
where the key is the vertex in question and the value is a list containing the vertex in question’s 
neighbors. A vertex is considered a neighbor of another vertex if it is within some distance R of 
the vertex being considered. The dictionary structure allows near constant time lookup of any 
vertex’s neighbors which is key in ensuring that our simulation runs as quickly as possible. 
Additionally, adjacency lists of this type avoid storing irrelevant information such as which 
vertices are not neighbors of the vertex in question as would happen when using an adjacency 
matrix. Therefore, this representation of adjacency information is favorable because it provides 
extremely fast lookup and avoids using any unnecessary memory. An example adjacency list for 
the points 0,1,2,3 could be declared in Python as follows: 
 

adjList)=){)
) 0:[1,2],)

1:[0,3],)
2:[0,3],)
3:[1,2],)

}??????????)
Of course in practice the adjacency list is determined programmatically by evaluating each point 
and all points within distance R of it. It should be noted that Python will allow us to see if any 
vertex is a member of the neighbors list in constant time because under the hood it is a hash set.  
For this reason, neighbors need not be in any particular order. Coloring information is stored in 
yet another dictionary (again for modularity) where the key is the vertex in question and the 



value is an integer corresponding to the color assigned to that node. So given a pointID it is 
possible to look up the coordinates of a point, the color of a point and the adjacent vertices of 
point in constant time. This makes processing all vertices in the graph a very efficient and speedy 
operation. Any remaining data structures used in the project will be described as individual 
algorithms are introduced. 
 
Point Generation and Connection Determination 
The first step in the program is to generate the points that will make up the RGG. The x, y and z 
coordinates for each point are generated using simple uniform real distribution random number 
generators which can be found in the Python standard library. These generators produce 
uniformly distributed pseudorandom real numbers in the range [0.0,1.0]. In the case of the 2D 
graphs on the unit square, randomly generating coordinates in the specified range is all that is 
required as it is impossible for a point to have invalid coordinates. However, graphs on the unit 
disk and unit sphere require some transformation to ensure that the points generated are indeed 
valid. For the disk, one possible solution is to randomly generate pairs as with the unit square 
and reject them if they have a distance greater than the radius away from the origin. However 
this is a probabilistic method that does not guarantee termination (although it almost certainly 
will) and could affect how random the points actually are on the disk, so I decided to instead use 
a method that will always produce a valid point. This involves picking random x,y coordinates as 
before and then transforming them using some simple trigonometric operations. A random point 
on the unit disk can be generated using the following logic: 
 

a)=)random.uniform(0,1.0))
) ) ) ) b)=)random.uniform(0,1.0))
) ) ) ) if)b)<)a:)
) ) ) ) ) swap(a,b))
) ) ) ) x)=)b)*)cos(2*pi*a/b))
) ) ) ) y)=)b)*)sin(2*pi*a/b))
 
In the case of 3D graphs on the unit sphere we also have multiple options for point generation. 
One such method, was discussed at length in class and involved picking points that fall within 
the unit sphere and rejecting those that don’t and then normalizing the distance vector to unit 
since the origin is at (0,0,0). This method does indeed generate uniformly distributed random 
points on the surface of a sphere but is again probabilistic in nature. Over the course of my 
research for this project I discovered a different method that was developed by Archimedes 
almost 2,000 years ago. His method is based on the relationship between a cylinder and a sphere 
in that “if a point is randomly distributed on the cylinder, its inverse axial projection will be 
uniformly distributed on the sphere” [8]. If we consider that a unit sphere has a radius of one we 
will quickly realize that the domain of the unit sphere inscribed in a cube is [-1.0,1.0]. So to 
generate random points about the surface of the unit sphere we simply generate points by first 
getting a value between -1.0 and 1.0 and then placing them on a cylinder by multiplying it by a 
value in the domain [0,2π] and then projecting it about its inverse axis we will have a point that 
is uniformly distributed about the surface of the unit sphere. In my implementation this is done 
with following logic: 
 

theta)=)2*pi*random.uniform(0,1.0))



phi)=)acos(2*random.uniform(0,1.0)?1.0))
x)=)cos(theta)*sin(phi))
y)=)sin(theta)*sin(phi))
z)=)cos(phi))
)

This approach has the added benefit of being substantially faster than the rejection method 
discussed in class. I ran several tests using the Python “TimeIt” library which is specifically 
designed to provide extremely accurate timing data for functions. I ran the test generating a list 
of 10,000 points using both methods 10,000 times. On average Archimedes’ method was about 
3.8x faster than the rejection method. All point generation methods are !(1) for a single point 
and !(#) when generating a graph of size n. 
 
Generating points is an extremely efficient operation is considered trivial. However determining 
connection between points is a more complex process. One solution is all-pairs testing where we 
check the Euclidean distance between each point and record adjacency if this distance in less 
than R. However this is ridiculous for graphs without an extremely large value for R as you will 
be comparing points that could not possibly be connected because they are extremely far away. 
This project makes use of the “cell method” to more intelligently choose which points should be 
compared. This is accomplished by segmenting the points into cells of size R x R. This cell is 
then compared to at most 5 other surrounding cells drastically reducing the number of 
comparisons needed to determine adjacency. In the actual implementation we partition the points 
into a cell map by first sorting them by their x coordinate. The points are then segmented into 
“sweeps” by simply checking if their x coordinate is less than a constant multiplied by R. We can 
determine the total number of sweeps needed by taking the ceiling of R/width of the square 
(which is unit in this case). Then we sort each sweep’s coordinates by their y value and segment 
them again so now we have cells. One thing that is nice about this approach is that we can reuse 
the segmenting method for an arbitrary level of dimensions. The “block” method is also used on 
3D graphs and simply segments that points an additional time by their z coordinate. Sorting is 
done using the Python standard sort which is extremely optimized, but still has a relatively 
expensive time complexity of !(|*| lg |*|). But by avoiding all pairs-testing which has a time 
complexity of !(#$) we reduce our time complexity to !(#$&$) where r is a value equal to or 
less than 1. In the case of the “block method” the time complexity is !(#$&'). However, in the 
theoretical worst case where every node is connected to every other node these methods still run 
in !(#$). In the average case this method is sufficiently efficient for large graphs. 
 
Smallest Last Ordering 
 
The Smallest Last Ordering is a way of sequencing the vertices in the graph such that vertex -. 
has the minimum degree in the remaining subgraph of vertices -/, -$, …2, -3where k ≤ n. By 
ordering the vertices in this fashion we can easily color all vertices in the RGG to determine sets 
to be used during the backbone selection process. 
 
Finding the Smallest Last Ordering of a set of vertices is accomplished by repeatedly applying 
the following four steps until there are no vertices remaining in the graph: 

1.! Find the vertex with the minimum degree 
2.! Delete this vertex from the set in consideration 



3.! Update all previously adjacent vertices such that their degree is equal to degree-1 
4.! Record the deleted vertex in the last available spot in the smallest last ordering list 

The smallest last ordering list is of size n because we must record the order of every vertex in the 
graph. The ordering list is built from the tail of the list to the head. By simply analyzing each 
step of this process we can see that Smallest Last Ordering can be done in ! * + 5  time. 
However, this running time is entirely dependent on our ability to find the minimum degree 
vertex in an efficient manner. To do this we instantiate the ordering process by first partitioning 
each vertex into buckets by their degree. This can be done in !( * ) time and does not require an 
initial sort to be performed. In my actual implementation this is achieved with the following 
logic: 
 

for)node)in)adjList.items():)
) ) ) ) ) degree)=)len(node[1]))
) ) ) ) ) buckets[degree])=)node[0])
 
In Python len() is a constant time operation so this process can clearly be seen to run in !( * ) 
time. The “buckets” structure shown in the above code is a dictionary of queues. Queues are used 
to ensure the nodes are being processed in the correct order and that a node does not 
unexpectedly drop from extremely high degree to extremely low degree by nature of being 
randomly chosen from the bucket with minimum degree. This process also makes it trivial to 
find the largest and smallest degree node in the graph by picking the first and last bucket and the 
first and last element of these buckets respectively (all constant time operations). 
 
To begin the Smallest Last Ordering process we first select and delete the vertex with minimum 
degree which as previously described can be done by choosing the first bucket and then popping 
the first element off of that queue. This is always a constant time operation as empty buckets are 
deleted as they become empty. Once found, the minimum degree vertex is deleted from the 
bucket and its neighbors degrees are update. This is trivial as we simply iterate through the 
deleted node’s neighbors in the adjacency list and if they have not yet been deleted we reduce 
their degree by one. When there is only 1 bucket remaining, its contents will be the members of 
the terminal clique as they must all have the same degree. 
 
Degree reduction is accomplished by moving the affected vertex down 1 to the next lowest 
bucket. This can be done for each neighbor of the deleted vertex with the following logic: 
 
) ) buckets[minDegree].remove(selectedVertex))
) ) for)neighbor)in)adjList[selectedVertex]:)
) ) ) if)neighbor)in)buckets:)
) ) ) ) buckets[neighbor[bucket]].remove(neighbor))
) ) ) ) buckets[neighbor[bucket]?1].append(neighbor))
) ) ) if)len(buckets[neighbor[bucket]))==)0:)
) ) ) ) del)buckets[neighbor[bucket]])
) ) slOrdering[curr])=)selectedVertex)
) ) curr)?=)1)
)



Because all structures used above are hash based they all operate in near constant time and add 
almost no overhead to the process. Additionally, this ensure the lowest bucket always contains 
the minimum degree node and can be accessed in constant time. So by simply analysis this 
process will run in !( 5 ) time. In the above code we are also recording the deleted node in the 
smallest last ordering which you will note is from back to front, also in constant time. This 
means that we are filling the list as we deleted nodes and at termination the list will be in order 
and complete. 
 
If we carefully examine each step in the algorithm  we will see that partition into buckets takes 
!( * ) time. Finding the minimum degree vertex, deleting it and updating its neighbors is done 
in near constant time. When repeatedly run until all vertices have been processed this step can be 
done in !( 5 ) time. Thus the entire Smallest Last Ordering process runs in !( * + 5 ) time 
as we visit each node and each edge exactly once. This process runs in !( * ) extra space as we 
will need to record the resulting order of the vertices in a list. 
 
Graph Coloring Algorithm 
 
Now that we have gotten the Smallest Last Ordering we can apply a graph coloring algorithm to 
generate independent sets that we will later use for backbone selection. This is a traditional 
greedy coloring algorithm that is often referred to as the “Grundy coloring algorithm” [10]. This 
algorithm assigns the lowest available color to a vertex being considered. In this context 
“available” simply means no vertex connected to the one being considered is currently using that 
color.  
 
Color assignment begins with the first element in the Smallest Last Order, which is the vertex 
that was deleted last in the Smallest Last Ordering process described above and assign it “color 
0.” We then continue to iterate over the Smallest Last Order coloring nodes as we go. If no color 
is currently available we add a new color to the pool and assign the vertex under consideration 
this color. Each time a new color is added, it is currently the maximum value color. When we 
arrive at each new vertex to be colored we get the list of its neighbors from the adjacency list 
dictionary in constant time and also get the colors of each of these vertices from the coloring 
dictionary. If any of its neighbors are not currently colored, that neighbor is not considered. The 
lowest color that is not currently assigned to one of these neighbors is assigned to the vertex 
under consideration. 
 
Since we are going through each edge and each vertex exactly once and we are only adding new 
colors as they are needed we can see that this coloring algorithm runs in !( * + 5 ) time. We 
can also efficiently determine the lowest color that is unused with the following logic: 
)

for)color)in)itertools.count():)
) ) ) ) if)color)not)in)neighbor_colors:)
) ) ) ) ) break)
 
Where neighbor_colors is a list containing the colors of all neighbors of the vertex being 
considered. This process counts up from zero and if that number (color) is not in neighbor_colors 
it is assigned to the vertex under consideration. The graph coloring algorithm runs in !(6) space 



complexity where m is the maximum number of colors needed to color the graph. An upper 
bound on the number of colors needed to successfully color the graph is equal to the maximum 
minimum-degree in the graph + 1. This is another great metric that can be used to ensure our 
program is working properly. 
 
One advantage (and the primary reason) of using the Smallest Last Order to color the graph is 
that minimum degree nodes will be colored last ensuring that the vertices colored first will be of 
large degree. Because of this, the larger degree vertices and thereby the best nodes to be in a 
backbone will be colored first, thus aggregating the largest color sets towards the lower colors, 
making backbone selection much easier. 
 
Bipartite Backbone Selection 
 
The final step in the project is to generate bipartite backbones from the coloring information 
determined above. As previously mentioned a backbone is a connect bipartite subgraph that will 
be the main trunk for communication in the wireless sensor network. In the optimal case, every 
node will have access to a node in the backbone which is equivalent to the backbone having 
vertex coverage equal to 100%. It then stands to reason that the best metric for determining the 
quality of a selected backbone is its vertex coverage (also known as domination percentage). 
Backbone generation occurs by selecting the largest color classes and joining their vertices 
according the same rule as for the entire RGG (vertices are connected if they are less than or 
equal to R from each other). Because we used the Smallest Last Order to color our graph we can 
say with a high degree of certainty that the largest color class will likely be one of the lowest 
colors used. It would stand to reason then that the backbone will almost always be comprised of 
vertices in color set 0 or 1 but this is not always the case. Instead we must test the combinations 
of the top k colors where k = 2*number of backbones desired. 
 
This project specifically asks for the top two backbones that be generated from the top 4 color 
classes. Because there are 4 colors, there a 6 possible bipartite combinations of colors and each 
must be tested. Getting the vertices that correspond to each color class is extremely fast as we 
can make use of our coloring hash map data structure that maps each vertex to its color in near 
(amortized) constant time.  
 
For each of the 6 combinations generated we must analyze the quality of the resulting backbone. 
Recall that a backbone must be connected to be considered a backbone, so the first step is to 
determine the size of the largest connected component in the graph. We do this by performing a 
component search on the bipartite subgraph that we are considering. This is done by a simple 
breadth first search starting from any vertex in the graph until it has reached all the nodes that it 
can. If all vertices in the bipartite graph were not reached, the number that were is recorded and 
this is noted as 1 component. The process is then reinitiated on an arbitrary remaining node until 
it has reached all the nodes it can. The process is repeated until every vertex has been visited 
once and thus all components have been determined. We would then return the largest connected 
component in that particular bipartite subgraph according to the project description. In most 
cases this “largest” component will have the highest domination percentage. However consider 
the edge case where there are two components of equal size. It would then be better to return the 
component with the highest vertex coverage instead of size. My implementation does this instead 



to help ensure that the best possible backbone is being chosen every time. After component 
search is run the final step is to choose the two resulting backbones that have the highest vertex 
coverage. This selection process is trivial and occurs in constant time ultimately returning the 
best two backbones achievable using this procedure. Vertex coverage is calculated by examining 
all vertices that can be reached by each vertex in the backbone and dividing that number by the 
total number of vertices in the graph. This is done in !( 7 ) time where k is the number of 
vertices in the backbone. Technically speaking the running time of this process is bounded by 
!( * + 5 ) due to the component search, but in practice it is likely to run in a more favorable 
time because if a component has more than 50% of the vertices than it is automatically assumed 
to be the largest connected component in that bipartite subgraph. This process requires ! *  
extra space to store information about which vertices are members of which backbone. 
 
Additional Verification 
 
To ensure that my project generates results correctly and efficiently, I decided to run a few 
additional benchmarks of my own in addition to those required in the project description. These 
benchmarks were all substantially larger than any of the 10 benchmarks we were asked to 
perform. I have selected only one of these, with 100,000 vertices, to include in my project 
appendix as I am already dangerously near the page limit. I have run my simulation with as many 
as 128,000 vertices with success. Unfortunately, with graphs over 100,000 nodes Microsoft excel 
was unable to plot the original vs deleted degree on my computer. It is my hope that the 
inclusion of this additional benchmark, which are included in the appendix at the end of the 
paper will convince the reader that the overall process scales incredibly well! 
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Benchmark 1: Square with n = 1000 vertices and R ≈ .10 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

ID# 1" RGG#Type# Square"
Num#Vertices# 1000" Superior#Backbone# Backbone1"

R# 0.099" Backbone1#Vertices# 152"
Desired#Avg#Degree# 30" Backbone1#Edges# 167"

Num#Edges# 14069" Backbone1#Coverage# 99.60%"
Min#Degree# 5" Backbone2#Vertices# 154"
Avg#Degree# 28.138" Backbone2#Edges# 177"
Max#Degree# 48" Backbone2#Coverage# 99.30%"

Max#Degree#When#Deleted# 19" Max#Color#Size# 80"
Number#of#Colors# 19" Terminal#Clique#Size# 19"
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Benchmark 2: Square with n = 4000 vertices and R ≈ .06 
 

 
 

 
 

ID# 2" RGG#Type# Square"
Num#Vertices# 4000" Superior#Backbone# Backbone1"

R# 0.057" Backbone1#Vertices# 450"
Desired#Avg#Degree# 40" Backbone1#Edges# 536"

Num#Edges# 77969" Backbone1#Coverage# 99.75%"
Min#Degree# 7" Backbone2#Vertices# 463"
Avg#Degree# 38.985" Backbone2#Edges# 555"
Max#Degree# 63" Backbone2#Coverage# 99.65%"

Max#Degree#When#Deleted# 30" Max#Color#Size# 239"
Number#of#Colors# 30" Terminal#Clique#Size# 30"
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Benchmark 3: Square with n = 4000 vertices and R ≈ .07 
 

 
 

 
 

ID# 3" RGG#Type# Square"
Num#Vertices# 4000" Superior#Backbone# Tie"

R# 0.070" Backbone1#Vertices# 337"
Desired#Avg#Degree# 60" Backbone1#Edges# 424"

Num#Edges# 114817" Backbone1#Coverage# 99.98%"
Min#Degree# 17" Backbone2#Vertices# 338"
Avg#Degree# 57.409" Backbone2#Edges# 422"
Max#Degree# 89" Backbone2#Coverage# 99.98%"

Max#Degree#When#Deleted# 38" Max#Color#Size# 171"
Number#of#Colors# 35" Terminal#Clique#Size# 30"

 
 
 
 
 
 
 
 
 
 
 
 



 
Original Graph (Without Edges) 

 
Min Degree Node (Blue) and 

Maximum Degree Node (Red) 

 
Backbone 1 

 
Backbone 2 

Benchmark 4: Square with n = 16000 vertices and R ≈ .035 
 

 
 

 
 

ID# 4" RGG#Type# Square"
Num#Vertices# 16000" Superior#Backbone# Backbone1"

R# 0.035" Backbone1#Vertices# 1308"
Desired#Avg#Degree# 60" Backbone1#Edges# 1671"

Num#Edges# 473825" Backbone1#Coverage# 99.81%"
Min#Degree# 14" Backbone2#Vertices# 1315"
Avg#Degree# 59.228" Backbone2#Edges# 1685"
Max#Degree# 88" Backbone2#Coverage# 99.79%"

Max#Degree#When#Deleted# 38" Max#Color#Size# 671"
Number#of#Colors# 37" Terminal#Clique#Size# 31"
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Benchmark 5: Square with n = 64000 vertices and R ≈ .017 
 

 
 

 
 

ID# 5" RGG#Type# Square"
Num#Vertices# 64000" Superior#Backbone# Backbone1"

R# 0.017" Backbone1#Vertices# 5225"
Desired#Avg#Degree# 60" Backbone1#Edges# 6781"

Num#Edges# 1921111" Backbone1#Coverage# 99.89%"
Min#Degree# 14" Backbone2#Vertices# 5200"
Avg#Degree# 60.035" Backbone2#Edges# 6676"
Max#Degree# 96" Backbone2#Coverage# 99.79%"

Max#Degree#When#Deleted# 40" Max#Color#Size# 2645"
Number#of#Colors# 38" Terminal#Clique#Size# 34"
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Benchmark 6: Disk with n = 4000 vertices and R ≈ .07 
 

 
 

 
 

ID# 6" RGG#Type# Disk"
Num#Vertices# 4000" Superior#Backbone# Backbone1"

R# 0.070" Backbone1#Vertices# 331"
Desired#Avg#Degree# 60" Backbone1#Edges# 421"

Num#Edges# 115513" Backbone1#Coverage# 99.95%"
Min#Degree# 18" Backbone2#Vertices# 332"
Avg#Degree# 57.757" Backbone2#Edges# 424"
Max#Degree# 84" Backbone2#Coverage# 99.80%"

Max#Degree#When#Deleted# 39" Max#Color#Size# 168"
Number#of#Colors# 39" Terminal#Clique#Size# 38"
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Benchmark 7: Disk with n = 4000 vertices and R ≈ .10 
 

 
 

 
 

ID# 7" RGG#Type# Disk"
Num#Vertices# 4000" Superior#Backbone# Tie"

R# 0.098" Backbone1#Vertices# 187"
Desired#Avg#Degree# 120" Backbone1#Edges# 246"

Num#Edges# 223118" Backbone1#Coverage# 100.00%"
Min#Degree# 49" Backbone2#Vertices# 182"
Avg#Degree# 111.559" Backbone2#Edges# 240"
Max#Degree# 163" Backbone2#Coverage# 100.00%"

Max#Degree#When#Deleted# 70" Max#Color#Size# 95"
Number#of#Colors# 63" Terminal#Clique#Size# 60"
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Benchmark 8: Disk with n = 4000 vertices and R ≈ .07 
 

 
 

 
 

ID# 8" RGG#Type# Sphere"
Num#Vertices# 4000" Superior#Backbone# Tie"

R# 0.070" Backbone1#Vertices# 322"
Desired#Avg#Degree# 60" Backbone1#Edges# 416"

Num#Edges# 121741" Backbone1#Coverage# 99.95%"
Min#Degree# 35" Backbone2#Vertices# 319"
Avg#Degree# 60.871" Backbone2#Edges# 418"
Max#Degree# 89" Backbone2#Coverage# 99.95%"

Max#Degree#When#Deleted# 38" Max#Color#Size# 163"
Number#of#Colors# 35" Terminal#Clique#Size# 33"
Backbone1#Faces# 96" Backbone2#Faces# 101"
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Benchmark 9: Disk with n = 16000 vertices and R ≈ .05 
 

 
 

 
 

ID# 9" RGG#Type# Sphere"
Num#Vertices# 16000" Superior#Backbone# Tie"

R# 0.049" Backbone1#Vertices# 708"
Desired#Avg#Degree# 120" Backbone1#Edges# 979"

Num#Edges# 967081" Backbone1#Coverage# 99.99%"
Min#Degree# 86" Backbone2#Vertices# 705"
Avg#Degree# 120.885" Backbone2#Edges# 989"
Max#Degree# 168" Backbone2#Coverage# 99.99%"

Max#Degree#When#Deleted# 88" Max#Color#Size# 356"
Number#of#Colors# 62" Terminal#Clique#Size# 52"
Backbone1#Faces# 273" Backbone2#Faces# 286"
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Benchmark 10: Disk with n = 64000 vertices and R ≈ .025 
 

 
 

 
 

ID# 10" RGG#Type# Sphere"
Num#Vertices# 64000" Superior#Backbone# Backbone"1"

R# 0.025" Backbone1#Vertices# 2836"
Desired#Avg#Degree# 120" Backbone1#Edges# 3931"

Num#Edges# 3868443" Backbone1#Coverage# 99.988%"
Min#Degree# 85" Backbone2#Vertices# 2835"
Avg#Degree# 120.889" Backbone2#Edges# 3928"
Max#Degree# 168" Backbone2#Coverage# 99.986%"

Max#Degree#When#Deleted# 85" Max#Color#Size# 1428"
Number#of#Colors# 62" Terminal#Clique#Size# 56"
Backbone1#Faces# 1097" Backbone2#Faces# 1095"
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APPENDIX(
 

Benchmark 11: Disk with n = 100000 vertices and R ≈ .014 
 

 
 

 
 

ID# 7" RGG#Type# Square"
Num#Vertices# 100000" Superior#Backbone# Backbone1"

R# 0.014" Backbone1#Vertices# 8073"
Desired#Avg#Degree# 60" Backbone1#Edges# 10402"

Num#Edges# 3014338" Backbone1#Coverage# 99.80%"
Min#Degree# 16" Backbone2#Vertices# 8106"
Avg#Degree# 60.287" Backbone2#Edges# 10446"
Max#Degree# 93" Backbone2#Coverage# 99.78%"

Max#Degree#When#Deleted# 39" Max#Color#Size# 4137"
Number#of#Colors# 38" Terminal#Clique#Size# 32"

 
The purpose of this additional benchmark is to show that my program can handle 
generating graphs that are substantially larger than what was requested in the 
project description. My program had no problems what so ever generating or 
visualizing a graph of this size. In quite a humorous twist, it was Microsoft Excel 
that had the problem as it could barely handle drawing the original vs deleted 
degree plot. Perhaps I should use R or MatPlotLib for large graphs in the future! 
 
Look at how smooth the color and degree distributions are! 


